$General\ Instructions:$

Read the following instructions carefully and strictly follow them:

- (i) This question paper contains 35 questions. All questions are compulsory.
- (ii) This question paper is divided into five Sections A, B, C, D and E.
- (iii) In Section A Questions no. 1 to 18 are multiple choice (MCQ) type questions, carrying 1 mark each.
- (iv) In Section B Questions no. 19 to 25 very short answer (VSA) type questions, carrying 2 marks each.
- (v) In Section C Questions no. 26 to 30 are short answer (SA) type questions, carrying 3 marks each.
- (vi) In Section D Questions no. 31 and 32 are case-based questions carrying 4 marks each.
- (vii) In Section E Questions no. 33 to 35 are long answer (LA) type questions carrying 5 marks each.
- (viii) There is no overall choice. However, an internal choice has been provided in 2 questions in Section B, 2 questions in Section C, 2 questions in Section D and 2 questions in Section E.
- (ix) Use of calculators is not allowed.

SECTION A

Questions no. 1 to 18 are Multiple Choice (MCQ) type Questions, carrying 1 mark each. 18×1=18

- 1. A compound CaCl₂. 6H₂O undergoes complete dissociation in water. The Van't Hoff factor 'i' is:
 - (a) 9

(b) 6

(c) 3

- (d) 4
- 2. For a zero order reaction of the type $A \rightarrow$ products, the rate equation may be expressed as:
 - (a) $k = \frac{[A]_0 [A]}{t}$

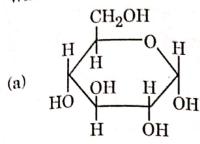
(b) $k = \frac{[A] - [A]_0}{t}$

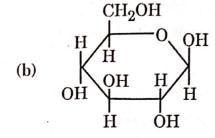
(c) $k = \frac{[A]_0 - [A]}{2t}$

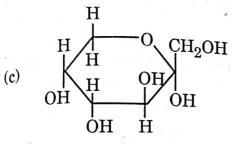
(d) $k = \frac{[A]_0 - [A]}{2} \cdot t$

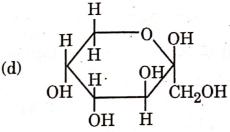
- 3. Which of the following Cu²⁺ halide is *not* known?
 - (a) CuBr₂

(b) CuI_2

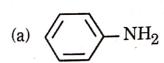

(c) CuCl₂


(d) CuF_2


56/4/3


3

4. Which of the following structures represents α -D-glucose?



- 5. The compounds $[Cr(H_2O)_6]Cl_3$, $[Cr(H_2O)_5Cl]Cl_2$. H_2O and $[Cr(H_2O)_4Cl_2]Cl$. $2H_2O$ exhibit:
 - (a) Linkage isomerism
- (b) Geometrical isomerism
- (c) Ionization isomerism
- (d) Hydrate isomerism
- 6. Which of the following alkenes on acid catalysed hydration gives a tertiary alcohol?
 - (a) 2-Butene

(b) 2-Methylpropene

(c) Propene

- (d) 1-Butene
- 7. When nitrobenzene is heated with tin and concentrated HCl, the product formed is:

(b)
$$\sim NH_3^+Cl^-$$

(c)
$$N = N -$$

5

9.	reaction is a measure of the : (a) activation energy of the rea		3-phenylpropene 1-phenylypropan-2-ol h each other in an elemen	tary
11.	 (b) order of the reaction (c) stoichiometry of the reaction (d) molecularity of the reaction On hydrolysis, which of the follogistations ? 		rhohydrates gives glucoso	and
	galactose ? (a) Sucrose (c) Maltose	(b) (d)	Lactose Cellulose	anu
12.	The deficiency of which of the follo (a) Vitamin A (c) Vitamin B 	(b) (d)	amins causes 'Rickets' ? Vitamin D Vitamin C	
13.	Which of the following is an 'Aceta (a) $CH_3CH_2 - OCH_3$ (b) $H_3C > C < O - CH_2 \\ H_3C > C < O - CH_2$ (c) $CH_3 - CH < OCH_3$	1'?		
56/4/3	(d) $CH_3 - CH < OH_3$	7>		P.T.O.

- The crystal field splitting energy in tetrahedral crystal field (Δ_t) is equal to : 14.
 - (a) $\frac{4}{9}\Delta_0$

(c) $\frac{4}{3}\Delta_0$

 $2\Delta_0$ (d)

For Questions number 15 to 18, two statements are given — one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below.

- Both Assertion (A) and Reason (R) are true and Reason (R) is the (a) correct explanation of the Assertion (A).
- Both Assertion (A) and Reason (R) are true, but Reason (R) is not (b) the correct explanation of the Assertion (A).
- Assertion (A) is true, but Reason (R) is false. (c)
- Assertion (A) is false, but Reason (R) is true. (d)
- Assertion (A): When NaCl is added to water, a depression in freezing 15. point is observed.
 - Reason (R): The vapour pressure of solution is increased which causes depression in freezing point.
- Assertion (A): Monobromination of aniline can be conveniently done by 16. protecting the amino group by acetylation.
 - Acetylation decreases the activating effect of the amino Reason (R): group.
- Assertion (A): Limiting molar conductivity (Λ_m°) is obtained by the 17. extrapolation of the $\Lambda_{\rm m}$ versus $C^{1/2}$ curve of strong electrolyte.
 - $\Lambda_{\rm m}^{\circ}$ for weak electrolytes is obtained by using Reason (R): Kohlrausch's law.
- Assertion (A): $E_{Cu}^{\circ}^{2+}/Cu$ is positive (+0.34 V). 18.
 - Copper has high $\Delta_a H^{\circ}$ and low $\Delta_{hvd} H^{\circ}$. Reason (R):

56/4/3

P.T.O.

SECTION B

19. Write IUPAC names of the following:

2×1=2

- (a) $[Co(en)_2(H_2O)(CN)]^{2+}$
- (b) $[Ni(NH_3)_6]Cl_2$

20. Name the cell which:

 $4 \times \frac{1}{2} = 2$

- (a) was used in Apollo Space programme.
- (b) is used in automobiles and inverters.
- (c) is suitable for hearing aids and watches.
- (d) does not give a steady potential and is used in transistors.

21. (a) What type of deviation from Raoult's law is shown by a mixture of ethanol and acetone? Give reason.

2

2

OR

(b) Define Azeotrope. What type of azeotrope is formed by negative deviation from Raoult's law? Give an example.

2×1=2

22. (a) Write the products of the following reactions:

(i) $CHO \xrightarrow{Conc. NaOH} \Delta$

(ii)
$$O + H_2NNH - CO - NH_2 \xrightarrow{H^+}$$

OR

(b) Do the following conversions in not more than two steps:

 $2\times 1=2$

- (i) Toluene to Benzoic acid
- (ii) Benzaldehyde to 1-Phenylethanol

56/4/3

< 11

23. The rate constant for the first order decomposition of N₂O₅ is given by the following equation:

$$\log k = 23.6 - \frac{2 \times 10^4 \text{ K}}{\text{T}}$$

Calculate Ea for this reaction.

 $[R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}]$

- 24. An alkyl halide (A) of molecular formula $C_6H_{13}Cl$ on treatment with alcoholic KOH gives two isomeric alkenes (B) and (C) of molecular formula C_6H_{12} . Both alkenes on hydrogenation give 2,3-dimethylbutane. Write the structures of (A), (B) and (C).
- 25. Write the mechanism of acid dehydration of ethanol to yield ethene.

SECTION C

26. Account for the following:

 $3 \times 1 = 3$

2

2

- (a) Benzyl chloride is highly reactive towards S_N1 reaction.
- (b) (±)-Butan-2-ol is optically inactive, though it contains a chiral carbon atom.
- (c) Chloroform is stored in closed dark coloured bottles.
- 27. The following data were obtained during the first order thermal decomposition of $\rm C_2H_5Cl$ at a constant volume :

$$\mathrm{C_{2}H_{5}Cl}\left(\mathrm{g}\right)\longrightarrow\mathrm{C_{2}H_{4}}\left(\mathrm{g}\right)+\mathrm{HCl}\left(\mathrm{g}\right)$$

Experiment	Time (s^{-1})	Total pressure (atm)
1	0	0.4
2	100	0.6

Calculate the rate constant.

3

(Given: $\log 2 = 0.3010$, $\log 3 = 0.4771$, $\log 4 = 0.6021$)

56/4/3

13

28. If benzoic acid (M = 122 g mol⁻¹) is associated into a dimer when dissolved in benzene and the osmotic pressure of a solution of 6·1 g of benzoic acid in 100 mL benzene is 6·5 atm at 27°C, then what is the percentage association of benzoic acid?

3

(Given: $R = 0.0821 L atm K^{-1} mol^{-1}$)

- 29. (a) (i) Write hydroboration-oxidation reaction with an example.
 - (ii) Write the products of the following reaction:

$$\begin{array}{c} & & \\ & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

(iii) Why is p-nitrophenol more acidic than phenol?

3×1=3

OR

- (b) (i) What happens when phenol reacts with
 - (1) Conc. HNO₃, and
 - (2) CHCl₃ in presence of aqueous NaOH followed by acidification?

Write equations only.

- (ii) Why does the reaction of CH_3ONa with $(CH_3)_3C Br$ give 2-methylpropene and not $(CH_3)_3C OCH_3$? 2+1=3
- **30.** Answer any *three* of the following questions:

3×1=3

- (a) Explain the type of hybridization in $[Fe(CN)_6]^{3-}$ on the basis of valence bond theory. (Given : Atomic number of Fe = 26)
- (b) Draw the geometrical isomers of $[PtCl_2(en)_2]^{2+}$ ion.
- (c) $[NiCl_4]^{2-}$ is paramagnetic while $[Ni(CO)_4]$ is diamagnetic though both are tetrahedral. Why?
- (d) Name the type of isomerism when ambidentate ligands are attached to central metal ion. Give one example of ambidentate ligand.

15

>

SECTION D

The following questions are case-based questions. Read the case carefully and answer the questions that follow.

Living systems are made up of various complex biomolecules like 31. carbohydrates, proteins, nucleic acids, lipids, etc. Carbohydrates are optically active polyhydroxy aldehydes or ketones or molecules which provide such units on hydrolysis. They are broadly classified into three groups - monosaccharides, oligosaccharides and polysaccharides. Monosaccharides are held together by glycosidic linkages to form disaccharides like sucrose, maltose or polysaccharides like starch and cellulose.

Another biomolecule : proteins are polymers of α -amino acids which are linked by peptide bonds. Ten amino acids are called essential amino acids. Structure and shape of proteins can be studied at four different levels i.e. primary, secondary, tertiary and quaternary, each level being more complex than the previous one.

Answer the following questions:

- What is the difference between a glycosidic linkage and peptide (i) linkage?
- Which amino acids are called essential amino acids? (ii)
- What are the common types of secondary structures of proteins? Write any two forces which stabilise the secondary and tertiary (iii) structures of protein.

OR

56/4/3

Define denaturation of protein with an example. During denaturation which structures of protein lose their biological (iii) activity?

P.T.O.

2

1

1

2

17

Amines are usually formed from nitro compounds, halides, amides, imides, etc. They exhibit hydrogen bonding which influences their physical properties. In alkyl amines, a combination of electron releasing, steric and hydrogen bonding factors influence the stability of the substituted ammonium cations in protic polar solvents and thus affect the basic nature of amines. In aromatic amines, electron releasing and withdrawing groups, respectively increase and decrease their basic character. Influence of the number of hydrogen atoms at nitrogen atom on the type of reactions and nature of products is responsible for identification and distinction between primary, secondary and tertiary amines. Presence of amino group in aromatic ring enhances reactivity of the aromatic amines. Aryl diazonium salts provide advantageous methods for producing aryl halides, cyanides, phenols and arenes by reductive removal of the diazo group.

Answer the following questions:

(i) Arrange the following in the increasing order of their pK_b values in aqueous solution:

 $C_2H_5NH_2$, $(C_2H_5)_2NH$, $(C_2H_5)_3N$

- (ii) Aniline on nitration gives a substantial amount of m-nitroaniline, though amino group is o/p directing. Why?
- (iii) An aromatic compound 'A' of molecular formula $C_7H_6O_2$ on treatment with aqueous ammonia and heating forms compound 'B'. Compound 'B' on heating with Br_2 and aqueous KOH gives a compound 'C' of molecular formula C_6H_7N . Write the structures of A, B and C.

OR
(iii) Complete the following reactions giving main products: $2 \times 1=2$

(1)
$$\begin{array}{c} NH_2 \\ + Br_2 (aq) \longrightarrow \\ N_2^+ Cl^- \\ \hline \\ (2) & \underbrace{ \begin{array}{c} N_2^+ Cl^- \\ \hline (ii) \ NaNO_2/Cu, \Delta \end{array} } \end{array}$$

19

P.T.O.

1

1

2

32.

SECTION E

- **33.** (a) (i) Account for the following:
 - (1) Zn²⁺ salts are colourless while Ni²⁺ salts are coloured.
 - (2) Cr^{2+} is a strong reducing agent.
 - (3) Transition metals and their compounds show catalytic activities.
 - (ii) Write the ionic equations for the oxidizing action of MnO_4^- in acidic medium with
 - (1) I ion, and
 - (2) Fe^{2+} ion.

3+2=5

OR

- (b) (i) Name two oxometal anions of the 3d series of the transition metals in which the metal exhibits the oxidation state equal to its group number.
 - (ii) What is the effect of increasing pH on a solution of $K_2Cr_2O_7$?
 - (iii) Why is Cu⁺ not stable in aqueous solution?
 - (iv) Name a member of Lanthanoid series which is well-known to exhibit +4 oxidation state.
 - (v) Name two elements of 3d series which show anomalous electronic configuration. $5\times 1=5$
- 34. (a) Draw structure of the 2,4-dinitrophenylhydrazone of benzaldehyde.
 - (b) Which acid of the following pair is a stronger acid?

$$F_3C$$
 — COOH or H_3C — COOH

- (c) Write the chemical equation involved in Rosenmund's reduction.
- (d) Why are α -hydrogen atoms of aldehydes and ketones acidic in nature?
- (e) Write a chemical test to distinguish between Benzaldehyde and Benzoic acid. $5\times 1=5$

- 35. (a) (i) Calculate the emf of the following cell at 298 K:

 Al (s) $|A|^{3+}$ (0.001 M) $||Ni^{2+}$ (0.1 M) |Ni (s)

 [Given: $E^{\circ}_{Al^{3+}/Al} = -1.66 \text{ V}, E^{\circ}_{Ni^{2+}/Ni} = -0.25 \text{ V}, \log 10 = 1$]
 - (ii) With the help of a graph explain why it is not possible to determine Λ_m° for a weak electrolyte by extrapolating the molar conductivity (Λ_m) versus $C^{1/2}$ curve as for strong electrolyte.

OR

- (b) (i) The molar conductivities of NH_4^+ and Cl^- ion are 73.8 S cm 2 mol $^{-1}$ and 76.2 S cm 2 mol $^{-1}$ respectively. The conductivity of 0.1 M $\mathrm{NH}_4\mathrm{Cl}$ is 1.29×10^{-2} S cm $^{-1}$. Calculate its molar conductivity and degree of dissociation.
 - (ii) Calculate the half-cell potential at 298 K for the reaction $Zn^{2+} + 2e^{-} \longrightarrow Zn$ if $[Zn^{2+}] = 0.1$ M and $E_{Zn^{2+}/Zn}^{\circ} = -0.76$ V. 3+2=5